A Three-layer MRF model for Object Motion Detection in Airborne Images

نویسندگان

  • Csaba Benedek
  • Josiane Zerubia
  • Tamás Szirányi
  • Zoltan Kato
چکیده

In this report, we give a probabilistic model for automatic change detection on airborne images taken with moving cameras. To ensure robustness, we adopt an unsupervised coarse matching instead of a precise image registration. The challenge of the proposed model is to eliminate the registration errors, noise and the parallax artifacts caused by the static objects having considerable height (buildings, trees, walls etc.) from the difference image. We describe the background membership of a given image point through two different features, and introduce a novel three-layer Markov Random Field (MRF) model to ensure connected homogenous regions in the segmented image. Key-words: aerial images, change detection, camera motion, MRF ∗ Pázmány Péter Catholic University, Department of Information Technology, Budapest, Hungary. † Distributed Events Analysis Research Group of the Computer and Automation Research Institute, Budapest, Hungary ‡ University of Szeged, Institute of Informatics, Szeged, Hungary § Ariana (joint research group INRIA/CNRS/UNSA), Sophia-Antipolis, France in ria -0 01 50 80 5, v er si on 2 4 Ju n 20 07 Un modèle de champ de Markov pour la détection de mouvement sur des images aériennes Résumé : Dans ce rapport, nous proposons un modèle stochastique pour la détection automatique de changements sur des images aériennes prises à l’aide de cameras mobiles. Afin d’assurer la robustesse de la méthode, nous adoptons une technique de mise en correspondance grossière non-supervisée au lieu d’une méthode précise de recalage d’images. Le défi du modèle proposé est de pouvoir éliminer les erreurs de recalage, le bruit et les artefacts dus au paralaxe causés par des objets statiques qui ont une certaine hauteur (bâtiments, arbres, murs, etc.), ceci à partir de l’image des différences. L’appartenance d’un point de l’image au fond est décrite grâce a‘ deux attributs différents et nous introduisons un champ de Markov original à 3 niveaux afin d’obtenir des régions homoge‘nes connectées dans l’image segmentée. Mots-clés : images aériennes, détection de changements, camera mobile, champ de Markov in ria -0 01 50 80 5, v er si on 2 4 Ju n 20 07 A Three-layer MRF model for Object Motion Detection in Airborne Images 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Buildings from a Single Airborne Image using a Markov Random Field Model

We propose an automated method for the detection of buildings from a single airborne color optical image using a dedicated Markov Random Field (MRF) model, which describes both geometric and photometric attributes of the 3-D objects of interest. The paper presents the basic principles and some preliminary results of our approach.

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

تحلیل حرکت جریانات دریائی در تصاویر حرارتی سطح آب دریا

Oceanographic images obtained from environmental satellites by a wide range of sensors allow characterizing natural phenomena through different physical measurements. For instance Sea Surface Temperature (SST) images, altimetry data and ocean color data can be used for characterizing currents and vortex structures in the ocean. The purpose of this thesis is to derive a relatively complete frame...

متن کامل

A Multi-Layer MRF Model for Video Object Segmentation

A novel video object segmentation method is proposed which aims at combining color and motion information. The model has a multilayer structure: Each feature has its own layer, called feature layer, where a classical Markov random field (MRF) image segmentation model is defined using only the corresponding feature. A special layer is assigned to the combined MRF model, called combined layer, wh...

متن کامل

Urban area detection from high- spatial resolution remote sensing imagery using Markov random field- based region growing

Dynamically changing urban areas require periodic automatic monitoring, but urban areas include various objects and different objects show diverse appearances. This makes it difficult to effectively detect urban areas. A region-growing method using the Markov random field (MRF) model is proposed for urban detection. It consists of three modules. First, it provides an automatic urban seed object...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008